3.555 \(\int \cot (c+d x) \sqrt{a+b \sin ^4(c+d x)} \, dx\)

Optimal. Leaf size=59 \[ \frac{\sqrt{a+b \sin ^4(c+d x)}}{2 d}-\frac{\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a+b \sin ^4(c+d x)}}{\sqrt{a}}\right )}{2 d} \]

[Out]

-(Sqrt[a]*ArcTanh[Sqrt[a + b*Sin[c + d*x]^4]/Sqrt[a]])/(2*d) + Sqrt[a + b*Sin[c + d*x]^4]/(2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0889988, antiderivative size = 59, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {3229, 266, 50, 63, 208} \[ \frac{\sqrt{a+b \sin ^4(c+d x)}}{2 d}-\frac{\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a+b \sin ^4(c+d x)}}{\sqrt{a}}\right )}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]*Sqrt[a + b*Sin[c + d*x]^4],x]

[Out]

-(Sqrt[a]*ArcTanh[Sqrt[a + b*Sin[c + d*x]^4]/Sqrt[a]])/(2*d) + Sqrt[a + b*Sin[c + d*x]^4]/(2*d)

Rule 3229

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = F
reeFactors[Sin[e + f*x]^2, x]}, Dist[ff^((m + 1)/2)/(2*f), Subst[Int[(x^((m - 1)/2)*(a + b*ff^(n/2)*x^(n/2))^p
)/(1 - ff*x)^((m + 1)/2), x], x, Sin[e + f*x]^2/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2] &
& IntegerQ[n/2]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \cot (c+d x) \sqrt{a+b \sin ^4(c+d x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\sqrt{a+b x^2}}{x} \, dx,x,\sin ^2(c+d x)\right )}{2 d}\\ &=\frac{\operatorname{Subst}\left (\int \frac{\sqrt{a+b x}}{x} \, dx,x,\sin ^4(c+d x)\right )}{4 d}\\ &=\frac{\sqrt{a+b \sin ^4(c+d x)}}{2 d}+\frac{a \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x}} \, dx,x,\sin ^4(c+d x)\right )}{4 d}\\ &=\frac{\sqrt{a+b \sin ^4(c+d x)}}{2 d}+\frac{a \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \sin ^4(c+d x)}\right )}{2 b d}\\ &=-\frac{\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a+b \sin ^4(c+d x)}}{\sqrt{a}}\right )}{2 d}+\frac{\sqrt{a+b \sin ^4(c+d x)}}{2 d}\\ \end{align*}

Mathematica [A]  time = 0.053884, size = 55, normalized size = 0.93 \[ -\frac{\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a+b \sin ^4(c+d x)}}{\sqrt{a}}\right )-\sqrt{a+b \sin ^4(c+d x)}}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]*Sqrt[a + b*Sin[c + d*x]^4],x]

[Out]

-(Sqrt[a]*ArcTanh[Sqrt[a + b*Sin[c + d*x]^4]/Sqrt[a]] - Sqrt[a + b*Sin[c + d*x]^4])/(2*d)

________________________________________________________________________________________

Maple [F]  time = 0.754, size = 0, normalized size = 0. \begin{align*} \int \cot \left ( dx+c \right ) \sqrt{a+b \left ( \sin \left ( dx+c \right ) \right ) ^{4}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)*(a+b*sin(d*x+c)^4)^(1/2),x)

[Out]

int(cot(d*x+c)*(a+b*sin(d*x+c)^4)^(1/2),x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+b*sin(d*x+c)^4)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.92246, size = 514, normalized size = 8.71 \begin{align*} \left [\frac{\sqrt{a} \log \left (\frac{8 \,{\left (b \cos \left (d x + c\right )^{4} - 2 \, b \cos \left (d x + c\right )^{2} - 2 \, \sqrt{b \cos \left (d x + c\right )^{4} - 2 \, b \cos \left (d x + c\right )^{2} + a + b} \sqrt{a} + 2 \, a + b\right )}}{\cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{2} + 1}\right ) + 2 \, \sqrt{b \cos \left (d x + c\right )^{4} - 2 \, b \cos \left (d x + c\right )^{2} + a + b}}{4 \, d}, \frac{\sqrt{-a} \arctan \left (\frac{\sqrt{b \cos \left (d x + c\right )^{4} - 2 \, b \cos \left (d x + c\right )^{2} + a + b} \sqrt{-a}}{a}\right ) + \sqrt{b \cos \left (d x + c\right )^{4} - 2 \, b \cos \left (d x + c\right )^{2} + a + b}}{2 \, d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+b*sin(d*x+c)^4)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(sqrt(a)*log(8*(b*cos(d*x + c)^4 - 2*b*cos(d*x + c)^2 - 2*sqrt(b*cos(d*x + c)^4 - 2*b*cos(d*x + c)^2 + a
+ b)*sqrt(a) + 2*a + b)/(cos(d*x + c)^4 - 2*cos(d*x + c)^2 + 1)) + 2*sqrt(b*cos(d*x + c)^4 - 2*b*cos(d*x + c)^
2 + a + b))/d, 1/2*(sqrt(-a)*arctan(sqrt(b*cos(d*x + c)^4 - 2*b*cos(d*x + c)^2 + a + b)*sqrt(-a)/a) + sqrt(b*c
os(d*x + c)^4 - 2*b*cos(d*x + c)^2 + a + b))/d]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a + b \sin ^{4}{\left (c + d x \right )}} \cot{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+b*sin(d*x+c)**4)**(1/2),x)

[Out]

Integral(sqrt(a + b*sin(c + d*x)**4)*cot(c + d*x), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+b*sin(d*x+c)^4)^(1/2),x, algorithm="giac")

[Out]

Timed out